191. Synthesis of a Glucose-Derived Tetrazole as a New β -Glucosidase Inhibitor. A New Synthesis of 1-Deoxynojirimycin

by Philipp Ermert and Andrea Vasella*

Organisch-chemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(15.X.91)

The tetrazole 1 is a new β -glucosidase inhibitor ($IC_{50} = 8 \cdot 10^{-5}$ M, *Emulsin*), obtained (92%) by deprotection of 22, the product of an intramolecular cycloaddition of the azidonitrile 20. This azidonitrile was formed as an intermediate by treating the L-*ido*-bromide 14 or the L-*ido*-tosylate 19 with NaN₃ at 110–125°. It was isolated in a separate experiment. The yield of 22 from 19 reached 70%; 21 was formed as by-product (10%). The bromide 14 (42%) and the iodide 15 (30–35%) were obtained from the nitrile 13, together with the 2,5-anhydro-L-idononitrile 16, which was formed in *ca*. 35–45%. The tosylate 19 was obtained from 18 (97%). To obtain 18, the nitrile 13 was oxidized according to *Swern* (\rightarrow 17, 92%) and then reduced (NaBH₄, CeCl₃), leading to 18 and 13 (92%, 18/13 93:7). Reduction of the tetrahydropyridotetrazole 22 with LiAlH₄ afforded 83% of the piperidine 23, which was deprotected to (+)-1-deoxynojirimycin hydroacetate (2 · AcOH, 86%) and further converted into the corresponding hydrochloride and into the free base 2.

Introduction. – A number of glycosidase inhibitors, some of them with promising biological properties, have been isolated or designed. Among them are not only polyhydroxylated piperidines (*e.g.* 1-deoxynojirimycin (2) [1], nojirimycin (3) [2], and related compounds), polyhydroxylated pyrrolidines (*e.g.* DAB 1 [3]) and indolizidines (*e.g.* castanospermine (4) [4] and swainsonine [5]), but also analogues of glyconolactones (glucono-1,5-lactone [6], nojirilactame 5 [7], the amidine 6 [8], acylated hydroximolactones 7 [9], and lactone hydrazones 8 [10]).

In the context of our interest in glucosidase inhibitors [9] [10], we wished to synthesize the tetrazole 1. This compound is of interest as an analogue of glucono-1,5-lactone; more precisely, it is a nonbasic diazo homologue of the amidin 6, or an analogue of nojirilactame (5), possessing an annulated ring. Several glycosidase inhibitors with a 1,2-annulated five-membered ring, such as kifunensine (9) [11], 8-epi-kifunensine [12], allosamidin [13], or the 6-epi-castanospermine analogue 10, a potential glycosidase inhibitor [14], have recently been isolated and/or prepared.

The obvious starting material for the synthesis of the tetrazole 1 and its protected form 22 (*Scheme 1*) is a 5-azido-5-deoxy-glycononitrile, such as 20. As a rule, monosaccharide derivatives which are modified at C(5) have been prepared from furanosides, whereas 20 is derived from the pyranose 11. The synthesis of 1 was of particular interest, as we have started to explore the potential of inter- and intramolecular substitutions at C(5) of acyclic derivatives obtained from pyranoses [15]¹). Finally, to the best of our knowledge, the intramolecular 1,3-dipolar cycloaddition of azidonitriles has not been used to form C,N bonds in the synthesis of carbohydrate-derived piperidinoses²), and we wished to demonstrate that tetrazoles such as 22 are convenient precursors of piperidinoses by transforming 22 into 1-deoxynojirimycin (2).

Results and Discussion. – The oxime **12** [18], obtained almost quantitatively from the tetra-*O*-benzylglucose **11** [19], was treated with PPh₃ and CBr₄ [20] to yield the nitrile **13** in 75–85% from **11** (*Scheme 2*).

a) NH₂OH, 96 % EtOH, 55–60°, 7 h; 99 %. b) PPh₃, CBr₄, MeCN, r.t., 20 min; 75–85 %.

The structure of 13 is evidenced by its elemental analysis and spectroscopic data. The IR spectrum shows an OH band at 3550 cm⁻¹. It shows no CN absorption, like the other nitriles described in this work, and similarly to what has been previously observed for α -alkoxynitriles [21] [22]. The ¹³C-NMR spectrum indicates the presence of a CN group (*s* at 116.93 ppm). Besides the aromatic C-atoms, 4 CH and 5 CH₂ signals were found. The ¹H-NMR spectrum shows signals for 4 Bn groups, 6 CH of the carbohydrate chain, and 1 CD₃OD-exchangeable OH.

¹) For examples of related efforts, cf. [16].

²) The intramolecular azide-alkene cycloaddition, however, is well known [17].

a) PPh₃, imidazole, Br₂ (or I₂), toluene, 110°, 2 h; 42 % of 14 (or 30–35% of 15). *b*) NaN₃, DMSO, 110–125°, 4 h; 43%. *c*) DMSO, (COCl)₂, CH₂Cl₂, Et₃N; 92%. *d*) NaBH₄, CeCl₃ · 6 H₂O, -60 to -40°, 55 min; 86%. *e*) TsCl, pyridine, 40–50°, 20 h; 97%. *f*) NaN₃, DMSO, 110–120°, 5 min; 37% of 20. *g*) (from 19) NaN₃, DMSO, 110–125°, 195 min; 70% of 22 and 10% of 21.

Two routes to the *L-ido*-configurated precursors 14, 15, and 19 of the tetrazole 22 were explored (*Scheme 3*), viz.double inversion and oxidoreduction. In the first approach, 13 was converted into the *L-ido*-bromide 14 by treatment with an excess of PPh_3/Br_2 and imidazole in boiling toluene [23]. The iodide 15 was obtained in a similar way. A neighboring-group participation of the C(2)–OBn group³), leading to the 2,5-anhydro-L-idononitrile 16 is at least partially responsible for the unsatisfactory yield of 14 (42%) and 15 (30–35%). The nitrile 16 was isolated from the product of iodination, while bromination of 13 gave 16 as the main constituent of a mixture of side products, from which it could not be isolated by the usual chromatographic methods.

The MS of 14 shows the peaks for $[M + H]^+$ at m/z 602 and 600 with the characteristic isotope distribution of a bromide; $[M + H]^+$ of 15 occurs at m/z 648. The ¹³C-NMR spectra of 14 and 15 show the *s* of the CN group at 116.33 and 116.21 ppm, respectively; a *d*, resonating at significantly higher field (51.46 ppm (14) and 32.23 ppm (15)) as compared to 13, is assigned to C(5).

³) Substituted benzyl ethers are well known to act as nucleophiles in the synthesis of tetrahydrofurans [27].

Swern oxidation [24] of 13 yielded 92% of the ketone 17; reduction of 17 with NaBH₄ in MeOH in the presence of CeCl₃·6 H₂O [25] gave the desired *L-ido*-hydroxynitrile 18 as the main product, besides 13 (92%; 18/13 93:7); a much lower degree of diastereoselectivity (88%; 18/13 = 59:41) was obtained in the absence of CeCl₃·6 H₂O. The hydroxynitrile 18 was converted into the tosylate 19 (97%) in the usual way.

Treatment of the bromide 14 with NaN₃ in DMSO at $110-125^{\circ}$ [26] led to the tetrazole 22 (43%) and to a mixture of elimination products⁴) (28%). Neither replacement of NaN₃ by NH₄N₃ nor a change of solvent (DMF, HMPT) improved the yields, which were even lower, when 15 was used as the starting material. When the tosylate 19 was exposed to NaN₃ under similar conditions, yields of the tetrazole 22 reached 70%. The major side product was the 2,5-anhydro-D-glucononitrile 21 (10%) [22]. Monitoring the reaction by TLC indicated the formation of an intermediate, less polar then the tosylate or the tetrazole, which was isolated and identified as the known [28] azidonitrile 20.

The IR spectrum of 17 is characterized by a CO band at 1735 cm⁻¹; in the ¹³C-NMR spectrum, s's at 206.53 and 116.22 ppm indicate the presence of a CO and a CN group, respectively. The structure of 18 is evidenced by the disappearance of the CO band and by a new OH absorption at 3570 cm⁻¹. The CN group resonates as a s at 116.67 ppm. The values for the chemical shift of 4 d, assigned to C(2) to C(5), are nearly identical with those observed for 13. In the ¹H-NMR spectrum of 18, H–C(5) (3.82 ppm) resonates at a higher field than H–C(3) (3.94 ppm) and H–C(4) (3.88 ppm), whereas for 13, the signal of H–C(5) (3.96 ppm) is observed between the signals of H–C(3) (4.06 ppm) and H–C(4) (3.87 ppm). The ¹H-NMR spectrum of 19 shows the resonance of H–C(5), superimposed by Bn signals, in a *m* at 4.63–4.71 ppm and thus at significantly lower field than the corresponding signal of 18. The structure of 19 is further evidenced by its elemental analysis and the ¹³C-NMR spectrum, indicating the presence of the CN group (*s* at 116.39 ppm).

The conformations of 13-15, 18, and 19 may (partially) be deduced and compared, based on the vicinal coupling constants (see the *Table*). For the D-gluco-alcohol 13, large values of J(2,3) and J(4,5), a small value of J(3,4),

	J(2,3)	J(3,4)	J(4,5)	J(5,6)	J(5,6')
13	6.9	3.0	7.7	4.8	4.0
14	4.1	6.6	3.0	6.0	7.4
15	3.9	6.9	2.8	5.9	8.5
18	5.1	5.7	2.8	5.9	6.1
19	5.3	5.1	4.2	5.0	4.2

Table. Selected H,H-Coupling Constants of Compounds 13-15, 18, and 19

⁴) In a preliminary experiment, this mixture was separated into two components A and B which were character-

ized by their ¹H-NMR spectra, but not further examined. The component A showed a d at 6.49 ppm (J = 12.9 Hz), assigned to H-C(6), and the component B showed at t at 5.42 ppm ($J \approx 6.9$ Hz) and a d at 4.07 ppm ($J \approx 6.2$ Hz), assigned to H-C(5) and H-C(3), respectively, in keeping with the tentative structures A and B, respectively.

and medium-to-small values of J(5,6) and J(5,6') are qualitatively compatible with an extended zig-zag conformation. The L-ido-alkohol **18** shows medium values for J(2,3), J(3,4), J(5,6), and J(5,6'), while J(4,5) is small, indicating a mixture of conformers and a gauche-arrangement of H-C(4) and H-C(5). The coupling constants may be tentatively rationalized by assuming two main conformers, **18A** and **18B**, the former with a zig-zag arrangement of the C-chain, implying a parallel 1,3-arrangement of BnO-C(3) and OH--C(5), perhaps stabilized by an intramolecular H-bond (J(OH, CH) = 6.9 Hz), the latter with a sickle conformation, similar to the dominant conformation of **14** and **15**. For these halides, one finds relatively small values for J(2,3) and J(4,5) and larger ones for J(3,4), J(5,6), and J(5,6'). Since both J(5,6) and J(5,6') of **14** and **15** are quite large, a further conformer must contribute to the equilibrium. The vicinal coupling constants of **19** show medium values, indicating a mixture of conformers.

The specific rotation of 20, the IR and the ¹H-NMR spectra are in keeping with the published data, with the exception of the *dd* at 3.8 ppm, for which we find J = 2.4 and 9.2 Hz and not J = 2 and 6.8 Hz [28]. The structures of 16 and 21 are in keeping with their elemental analysis and their spectroscopic data. In the MS of 16 and 21, $[M + H]^+$ is found at m/z 430; $[M + NH_4]^+$ in the CI-MS (NH₃) of 16 is at m/z 447. The ¹H-NMR spectrum of 21 (300 MHz, C₆D₆) is in agreement with the published spectrum (60 MHz, C₆D₆) [22], establishing its configuration, which is as expected from mechanistic consideration. The isomer 16 must then possess the L-*ido*-configuration, which is in agreement with the elemental analysis and the MS ($[M + H]^+$ at m/z 563). A s at 152.46 ppm and the disappearance of the CN signal evidence the tetrazole ring. The H,H-coupling constants J(5,6) = 7.5, J(6,7) = 8.9, and J(7,8) = 6.9 Hz are in keeping with a gluco-configuration.

Hydrogenolytic debenzylation of 22 afforded the desired tetrazole 1 (92% after chromatography; *Scheme 4*). The structure of 1 was established by X-ray analysis. There

a) H₂, 10% Pd/C, MeOH, AcOH, r.t., 30 h; 92%. *b*) LiAlH₄, Et₂O, reflux, 5 h; 83%. *c*) 1) H₂ (8 bar), 10% Pd/C, AcOH, r.t., 15 h; 86%; 2) MeOH, aq. HCl soln.; 3) *Dowex* 1×8 (OH⁻).

are two crystallographically independent molecules (I and II, *Fig.*)⁵) in the asymmetric unit, each possessing the same configuration. The configuration at C(5) is *R*, assuming that the chirality at C(2), C(3), and C(4) has not changed. The torsional angle C(5)-N(1)-C(1)-C(2) is -4.5° (molecule I) and the torsional angle $C(15)-N(1)-C(11)-C(12)-3.4^{\circ}$ (molecule II); this indicates that the atoms C(5), N(1), C(1), and C(2) or C(15), N(11), C(11), and C(12) are in the same plane. The ⁴H₃ (= ⁶H₇) conformation is clearly visible from the perspective view of the molecules (*Fig.*).

⁵) Atomic coordinates, bond lengths, and angles were deposited with the *Cambridge Crystallographic Data Center*, University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England. The numbering of the atoms in the *Figure* is different from the systematic numbering (*cf. Scheme 4*) used to discuss the NMR spectra and the conformation.

The ¹³C-NMR spectrum of 1 shows the characteristic s for the tetrazole ring at 155.52 ppm. In the MS, $[M + H]^+$ is observed as main peak at m/z 203. In the ¹H-NMR spectrum (CD₃OD), signals corresponding to 6 CH are detected. The large coupling constants of the ring protons (J(5,6) = 8.5, J(6,7) = 9.5, and J(7,8) = 8.4 Hz) indicate a ⁶H₇ conformation. The homoallylic coupling, $J(8,5) \approx 0.7$ Hz, is in agreement with a planar arrangement of C(8), C(9), N(4), and C(5).

Preliminary investigations show an IC_{50} of $0.8 \cdot 10^{-4}$ M for 1 against *Emulsin* (β -glucosidase isoenzyme mixture from almonds) and an IC_{50} of $3 \cdot 10^{-2}$ M, $K_1 = 17.9 \cdot 10^{-3}$ M against glucosidase II (an α -glucosidase) in porcine liver extract⁶).

The reductive ring cleavage of 1,5-disubstituted tetrazoles proceeds with loss of three of the ring N-atoms to give secondary amines [29]. Thus, **22** was reduced with an excess of LiAlH₄ to yield 83% of the tetra-O-benzyldeoxynojirimycin **23** [30] (*Scheme 4*). Hydrogenolysis of **23** (10% Pd/C, AcOH, 8 bar) yielded deoxynojirimycin hydroacetate (2 · AcOH) in 86% after chromatography. This hydroacetate was converted into the

2048

⁶) Measurements against glucosidase II were carried out at pH 6.5, using the artificial substrate methylumbelliferyl α -D-glucopyranoside; the inhibition was clearly competitive.

corresponding hydrochloride and, hence, by treatment with *Dowex* 1×8 (OH⁻) into the free base **2**.

The benzyl derivative 23 was identified by its m.p. and spectroscopic data. The IR spectrum shows an NH band at 3440 cm⁻¹; $[M + H]^+$ is found in the CI-MS at m/z 524. A *ddd* at 2.72 ppm (J = 2.6, 5.9, 9.1 Hz) in the ¹H-NMR spectrum is assigned to H–C(5); the large coupling constant J(4,5) = 9.1 Hz is in keeping with the D-gluco-configuration. The large values of J(1a,2), J(3,4), and J(4,5) indicate a 4C_1 conformation. The ¹H-NMR spectrum of 2. ACOH shows 8 CH of the piperidinose ring with the characteristic deoxynojirimycinium pattern and a s at 1.89 ppm which integrates for 3 H and indicates the presence of the ACO⁻ anion. In the CI-MS, $[M + H]^+$ occurs at m/z 164. The spectroscopic data of 2. HCl and of the free base 2 match the published data [2] [31].

We thank Dr. D. Brada, Zell- und Molekularpathologie, Institut für Pathologie der Universität, 8091 Zürich, for measuring the inhibition constant against glucosidase II, Dr. A. Linden for determining the X-ray structure, and the Swiss National Science Foundation and F. Hoffmann-La Roche AG, Basel, for generous support.

Experimental Part

General. Solvents were distilled before use. Normal workup implies distribution of the crude product between the indicated org. solvent and H₂O, drying of the org. layer (MgSO₄), filtration, and evaporation of the filtrate. TLC: *Merck* silica gel 60*F*-254 plates; detection by heating with 5% vanillin in conc. H₂SO₄ or with mostain [32] (400 ml of 10% H₂SO₄ soln., 20 g of (NH₄)₆Mo₇O₂₄ · 6 H₂O, 0.4 g of Ce(SO₄)₂). Flash chromatography (FC): silica gel *Merck* 60 (0.04–0.063 mm). M.p.: uncorrected. ¹H (300 MHz)- and ¹³C-NMR (50 MHz): chemical shifts δ in ppm and coupling constants *J* in Hz.

2,3,4,6-Tetra-O-benzyl-D-glucononitrile (13). NH₂OH · HCl (10.26 g, 148 mmol) was added at 55° to a stirred soln. of Na (1.76 g, 76.5 mmol) in 96% aq. EtOH (375 ml). Stirring was continued for 5 min followed by addition of 2,3,4,6-tetra-O-benzyl-D-glucopyranose (11; 10.0 g, 18.5 mmol). The mixture was stirred for 7 h at 55-60° and filtered. The residue was washed with AcOEt, and the combined filtrate and washings were concentrated. Normal workup (AcOEt) gave crude oxime 12 which crystallized when dried i.v. (10.19 g, 99%). CBr₄ (10.39 g, 31.3 mmol) in dry MeCN (40 ml) was added at 20-25° to a stirred soln. of crude 12 (6.96 g, 12.5 mmol) and PPh₃ (6.57 g, 25 mmol) in MeCN (100 ml). Stirring was continued for 20 min, then a soln. of PPh₃ (1.65 g, 6.3 mmol) in MeCN (50 ml) and MeOH (140 ml) was added. After 15 min, the soln. was evaporated and dried i.v. FC (hexane/AcOEt 85:15) of the residue afforded 13 (5.11 g, 76%). Yellowish oil. R_f (hexane/AcOEt 1:1) 0.52. $[\alpha]_{D}^{25} = +61.7$ (c = 1.29, CHCl₃): IR (CHCl₃): 3550m (br.), 3090w, 3060w, 3000w, 2920w, 2870w, 1450w, 1345w, 1075s (br.), 905w. ¹H-NMR $(CDCl_3): 2.47 (d, J = 6.6, exchanged with CD_3OD, OH-C(5)); 3.56 (dd, J = 4.8, 9.9, H-C(6)); 3.60 (dd, J = 4.0, 0)$ 10.0, H'-C(6); 3.87 (dd, J = 3.0, 7.7, H-C(4)); 3.96 (m, changed after addn. of CD₃OD, H-C(5)); 4.06 (dd, J = 3.0, 6.9, H-C(3); 4.42 (d, J = 6.9, H-C(2)); 4.45–4.54 ($m, 4 H, PhCH_2$); 4.65 ($d, J = 11.1, PhCH_2$); 4.68 ($d, J = 1.1, PhCH_2$]; 4.68 ($d, J = 1.1, PhCH_2$]; 4.68 (d, J = 1.1,J = 11.1, PhCH₂); 4.76 (d, J = 11.3, PhCH₂); 4.85 (d, J = 11.5, PhCH₂); 7.20–7.38 (m, 20 arom. H). ¹³C-NMR (CDCl₃): 69.21 (d); 69.67 (d); 70.52 (t); 72.88 (t); 73.41 (t); 74.30 (t); 75.24 (t); 77.85 (d); 78.70 (d); 116.93 (s); 127.81-128.85 (several d); 135.61 (s); 137.43 (s); 137.59 (s). CI-MS (C₄H₁₀): 628 (20), 539 (38), 538 (100, [M + H]⁺), 430 (11), 91 (4). Anal. calc. for C₃₄H₃₅NO₅ (537.66): C 75.95, H 6.56, N 2.61; found: C 75.77, H 6.80, N 2.55.

2,3,4,6-Tetra-O-benzyl-5-bromo-5-deoxy-L-idononitrile (14). A soln. of 13 (10.24 g, 19 mmol) in dry toluene (160 ml) was heated to reflux, slightly cooled, and treated with PPh₃ (19.97 g, 76 mmol), imidazole (5.22 g, 76 mmol), toluene (160 ml), and a soln. of Br₂ (9.11 g, 57 mmol) in toluene (20 ml), causing the formation of a sticky precipitate. The mixture was heated under reflux for 2 h, diluted with toluene (400 ml), and poured onto sat. aq. NaHCO₃ soln. (500 ml). The remaining material in the reaction vessel was taken up in toluene/H₂O and added to the bulk of material. The two layers were vigorously mixed, and Br₂ (*ca.* 3 ml) was added until the color of the toluene layer changed from yellow to orange. The mixture was treated with aq. Na₂S₂O₃ soln. and vigorously mixed; the org. layer was separated and washed (aq. Na₂S₂O₃ soln., H₂O). The H₂O layers were extracted back with toluene. The combined toluene layers were dried (MgSO₄) and evaporated. FC (hexane/AcOEt 95:5) of the residue yielded 14 as a brown oil (4.82 g, 42%), sufficiently pure for the next step. An anal. sample was further purified by FC to give a yellowish oil. R_f (hexane/AcOEt 8:2) 0.35. [α] $_{D5}^{25}$ = +39.9 (c = 0.845, CHCl₃). IR (CHCl₃): 3090w, 3070w, 3040w, 3010w, 2910w, 2870w, 1955w, 1875w, 1810w, 1595w, 1495w, 1450m, 1340m (br.), 1080s (br.), 1025s, 910m. ¹H-NMR (CDCl₃): 3.59 (dd, J = 6.0, 10.1, H–C(6)); 3.78 (dd, J = 7.4, 10.1, H'–C(6)); 4.00 (ddd, J = 3.0,

6.0, 7.3, H–C(5)); 4.07 (*dd*, J = 4.1, 6.6, H–C(3)); 4.15 (*dd*, J = 3.1, 6.6, H–C(4)); 4.34 (*d*, J = 4.1, H–C(2)); 4.37 (*d*, J = 12.2, PhCH₂); 4.42 (*d*, J = 12.0, PhCH₂); 4.52 (*d*, J = 11.7, PhCH₂); 4.67 (*d*, J = 11.3, PhCH₂); 4.72 (*d*, J = 10.9, PhCH₂); 4.79 (*d*, J = 10.9, PhCH₂); 4.79 (*d*, J = 10.9, PhCH₂); 4.84 (*d*, J = 11.9, PhCH₂); 4.88 (*d*, J = 11.9, PhCH₂); 7.25–7.36 (*m*, 20 arom. H). ¹³C-NMR (CDCl₃): 51.46 (*d*); 68.35 (*d*); 70.65 (*t*); 72.67 (*t*); 72.89 (*t*); 74.96 (*t*); 75.38 (*t*); 77.19 (*d*); 80.21 (*d*); 116.33 (*s*); 127.60–128.66 (several *d*); 135.05 (*s*); 137.09 (*s*); 137.54 (*s*); 137.77 (*s*). CI-MS (C₄H₁₀): 603 (32), 602 (97, [*M* + H]⁺), 601 (35), 600 (100, [*M* + H]⁺), 181 (14), 91 (7). Anal. calc. for C₃₄H₃₄BrNO₄ (600.56): C 68.00, H 5.71, N 2.33, Br 13.31; found: C 68.04, H 5.81, N 2.29, Br 13.30.

2,3,4,6-Tetra-O-benzyl-5-deoxy-5-iodo-L-idononitrile (15) and 2,5-Anhydro-3,4,6-tri-O-benzyl-L-idononitrile (16). A soln. of 13 (500 mg, 0.93 mmol) in dry toluene (25 ml) was heated to reflux, slightly cooled, and treated with PPh₃ (977 mg, 3.72 mmol), imidazole (255 mg, 3.74 mmol), and I₂ (710 mg, 2.79 mmol). The heterogeneous mixture was kept under reflux for 2 h, diluted with toluene (30 ml), and poured onto sat. aq. NaHCO₃ soln. (75 ml). The material remaining in the reaction vessel was taken up in a minimal amount of acetone and added to the bulk of material. The mixture was stirred vigorously for 5 min, then I₂ was added in portions until the color of I₂ was no longer discharged. Stirring was continued for 10 min, then crystalline Na₂S₂O₃ was added until disappearance of the I₂ color. Normal workup (toluene, aq. Na₂S₂O₃ soln., H₂O) and FC (hexane/AcOEt 95:5) afforded 15 (178 mg, 30%) and 16 (178 mg, 44%), both as slightly yellowish oils.

Data of 15: $R_{\rm f}$ (hexane/AcOEt 8:2) 0.39. $[\alpha]_{D}^{25} = +33.1$ (c = 0.317, CHCl₃). IR (CHCl₃): 3090w, 3070w, 3030w, 3010w, 2910w, 2870w, 1950w, 1875w, 1810w, 1495w, 1455w, 1400w, 1365w, 1305w, 1240w, 1115s (br.), 1080s (br.), 1030s, 915w. ¹H-NMR (CDCl₃): 3.63 (*dd*, J = 5.9, 10.1, H–C(6)); 3.71 (*dd*, J = 2.7, 7.0, H–C(4)); 3.76 (*dd*, J = 8.5, 10.0, H'–C(6)); 4.00 (*dd*, J = 3.9, 6.9, H–C(3)); 4.08 (*ddd*, J = 2.8, 5.8, 8.5, H–C(5)); 4.30 (*d*, J = 3.9, 10.9, H–C(3)); 4.52 (*d*, J = 11.7, PhCH₂); 4.68 (*d*, J = 11.5, PhCH₂); 4.75 (*d*, J = 10.9, PhCH₂); 4.80 (*d*, J = 10.9, PhCH₂); 4.87 (*d*, J = 11.6, 2 H, PhCH₂); 7.24–7.37 (*m*, 20 arom. H). ¹³C-NMR (CDCl₃): 32.23 (*d*); 68.23 (*d*); 72.23 (*t*); 72.50 (*t*); 72.60 (*t*); 74.59 (*t*); 75.30 (*t*); 76.75 (*d*); 82.14 (*d*); 116.21 (*s*); 127.51–128.57 (several *d*); 134.91 (*s*); 137.00 (*s*); 137.51 (*s*); 137.88 (*s*). CI-MS (NH₃): 696 (10), 666 (38), 665 (100, [*M* + H]⁺), 648 (23, [*M* + H]⁺), 447 (14), 431 (13), 313 (13), 308 (39), 295 (18), 200 (11), 108 (16), 91 (14). Anal. calc. for C₃₄H₃₄INO₄ (647.56): C 63.06, H 5.29, I 19.60, N 2.16; found: C 63.14, H 5.23, I 19.41, N 2.27.

Data of 16: R_f (hexane/AcOEt 8:2) 0.25. $[\alpha]_{D}^{25} = 0.0$ (c = 0.65, CHCl₃). IR (CHCl₃): 3090w, 3060w, 3030w, 3010w, 2930w, 2870m, 1955w, 1875w, 1810w, 1495m, 1455m, 1395w, 1370w, 1355w, 1305w, 1245w, 1105s, 1075s, 1030m, 990m, 910w. ¹H-NMR (CDCl₃): 3.63–3.72 (m, CH₂(6)); 4.06 (dd, J = 2.0, 4.1, H–C(4)); 4.12 (dd, J = 2.0, 4.9, H–C(3)); 4.41–4.65 (m, 7 H, H–C(5), PhCH₂); 4.85 (d, J = 4.9, H–C(2)); 7.18–7.38 (m, 15 arom. H). ¹³C-NMR (CDCl₃): 67.39 (t); 69.72 (d); 72.42 (t); 72.78 (t); 73.36 (t); 80.26 (d); 80.88 (d); 81.69 (d); 115.77 (s); 127.60–128.49 (several d); 136.55 (s); 137.07 (s); 137.77 (s). CI-MS (NH₃): 448 (17), 447 (60, [M + NH₄]⁺), 431 (29), 430 (100, [M + H]⁺), 338 (15), 108 (13), 91 (23). Anal. calc. for C₂₇H₂₇NO₄ (429.52): C 75.50, H 6.34, N 3.26; found: C 75.37, H 6.09, N 3.43.

2,3,4,6-Tetra-O-benzyl-D-xylo-hex-5-ulosononitrile (17). Freshly distilled oxalyl chloride (2.12 g, 16.7 mmol) was added dropwise over 12 min to a cooled (-60 to -65°) soln. of dry DMSO (2.6 g, 33.3 mmol) in dry CH₂Cl₂ (30 ml). After 10 min, a soln. of **13** (2.0 g, 3.7 mmol) in CH₂Cl₂ (30 ml) was added over 25 min at this temp. The mixture was stirred for 15 min at -65 to -60°, allowed to warm over 50 min to -20°, maintained for 60 min at -35 to -25°, and again cooled to -65°; Et₃N (20 ml) was then added dropwise over 20 min at -65°. The turbid mixture was warmed over 105 min to 0°, treated with H₂O, and diluted with CH₂Cl₂. Normal workup (CH₂Cl₂, H₂O) and FC (hexane/AcOEt 85:15) yielded **17** (1.84 g, 92%). Yellow, clear oil. *R*_f (hexane/AcOEt 7:3) 0.42. [α]₂⁵⁵ = +20.2 (c = 0.837, CHCl₃). IR (film): 3090w, 3060w, 3030m, 2910w, 2870m, 1955w, 1875w, 1815w, 1735s, 1605w, 1585w, 1495m, 1455s, 1400m, 1355m, 1210m, 1095s, 1080s, 1040m, 1030s, 910w, 820w. ¹H-NMR (CDCl₃): 4.12 (d, J = 18.3, H-C(6)); 4.17 (dd, $J \approx 3.4$, 6.5, H-C(3)); 4.21 (d, J = 18.3, H'-C(6)); 4.35 (d, J = 11.3, PhCH₂); 4.49-4.55 (m, 3 H, PhCH₂); 4.59 (d, J = 11.2, PhCH₂); 4.63 (d, J = 11.3, PhCH₂); 4.80 (d, J = 11.3, PhCH₂); 7.17-7.37 (m, 20 arom. H). ¹³C-NMR (CDCl₃): 68.20 (d); 72.95 (t); 73.13 (t); 74.27 (t); 74.63 (t); 74.96 (t); 78.93 (d); 82.01 (d); 116.22 (s); 127.79-128.53 (several d); 135.13 (s); 136.51 (s); 136.59 (s); 206.53 (s). CI-MS (C₄H₁₀): 537 (36), 536 (91, [M + H]⁺), 181 (42), 107 (12), 91 (100). Anal. calc. for C₃₄H₃₃NO₅ (535.65): C 76.24, H 6.21, N 2.61; found: C 76.22, H 6.48, N 2.47.

2,3,4,6-Tetra-O-benzyl-L-idononitrile (18). A soln. of 17 (80 mg, 0.15 mmol) in MeOH (2 ml) was treated with CeCl₃ · 6 H₂O (53 mg, 0.15 mmol) and cooled to -60° (\rightarrow precipitate). NaBH₄ (17 mg, 0.45 mmol) was added in portions. The stirred mixture was allowed to warm to -40° over 45 min, then cooled to -60° and stirred for 10 min. The mixture was poured onto phosphate buffer (50 ml; to 10 g of NaH₂PO₄ in 100 ml of H₂O, aq. NaOH was added until pH *ca*. 6) and worked up as usual (AcOEt, phosphate buffer pH 6, H₂O). FC (hexane/AcOEt 85:15) afforded 13 as a yellowish oil (5 mg, 6%) and 18 as a turbid oil which crystallized when dried *i.v.* (69 mg, 86%). An anal.

sample of **18** was recrystallized in Et₂O/hexane. R_f (hexane/AcOEt 7:3) 0.25. M.p. $61-62^{\circ}$. $[\alpha]_D^{25} = +48.15$ (c = 0.596, CHCl₃). IR (CHCl₃): 3570w, 3090w, 3060w, 3030w, 3010w, 2950w, 2870m, 1955w, 1875w, 1810w, 1605w, 1495w, 1455m, 1395w, 1350w, 1305w, 1120s, 1090s, 1030m, 915w. ¹H-NMR (CDCl₃): 2.37 (d, J = 6.9, exchanged with D₂O, OH-C(5)); 3.35 (dd, J = 5.9, 9.4, H-C(6)); 3.43 (dd, J = 6.1, 9.4, H'-C(6)); 3.82 (dq, J = 2.87, 6.1, dt after addn. of D₂O, H-C(5)); 3.88 (dd, J = 2.8, 5.7, H-C(4)); 3.94 ($t, J \approx 5.4, H-C(3)$); 4.40 ($d, J = 11.9, PhCH_2$); 4.45 (d, J = 5.1, H-C(2)); 4.45 ($d, J = 11.9, PhCH_2$); 4.55 (d, J = 11.4, 2 H, PhCH₂); 4.66 ($d, J = 11.2, PhCH_2$); 4.75 ($d, J \approx 10.6, PhCH_2$); 4.78 ($d, J \approx 10.6, PhCH_2$); 7.22-7.37 (m, 20 arom. H). ¹³C-NMR (CDCl₃): 68.69 (d); 69.46 (d); 70.72 (t); 73.61 (t); 74.76 (t); 75.02 (t); 77.61 (d); 78.61 (d); 116.67 (s); 127.70-128.88 (several d); 135.41 (s); 137.22 (s); 137.62 (s); 137.79 (s). CI-MS (C₄H₁₀): 538 (21, [M + H]⁺), 448 (20), 447 (98), 431 (48), 430 (100), 429 (75). Anal. calc. for C₃₄H₃₅NO₅ (537.66): C 75.95, H 6.56, N 2.61; found: C 75.84, H 6.36, N 2.64.

2,3,4,6-Tetra-O-benzyl-5-O-(4-toluenesulfonyl)-L-idononitrile (19). A mixture of 4-toluenesulfonyl chloride (532 mg, 2.79 mmol) and 18 (150 mg, 0.28 mmol) in pyridine (2.5 ml) was stirred at 40–50° for 20 h and then concentrated until formation of a precipitate. The residue was treated with sat. aq. NaHCO₃ soln., stirred for 10 min, and worked up as usual (CHCl₃, sat. aq. NaHCO₃ soln., H₂O). FC (hexane/AcOEt 85:15) yielded 19 (187 mg, 97%). Colorless oil. R_f (hexane/AcOEt 7:3) 0.33. $[\alpha]_D^{25} = +37.8$ (c = 0.495, CHCl₃). IR (CHCl₃): 3090w, 3060w, 3010w, 2920w, 2870w, 1950w, 1805w, 1595w, 1495w, 1455w, 1400w, 1365m, 1305w, 1235w, 1190m, 1175s, 1120m, 1095s, 1025m, 915m, 815m. ¹H-NMR (CDCl₃): 2.37 (s, Me); 3.37 (dd, J = 5.0, 11.0, H–C(6)); 3.60 (dd, J = 4.2, 11.0, H–C(6)); 3.81 (t, $J \approx 5.1$, 1 H); 4.15 (t, $J \approx 4.2$, 1 H); 4.20 (d, J = 11.2, PhCH₂); 4.29 (d, $J \approx 12.6$, PhCH₂); 4.32 (d, J = 5.3, H–C(2)); 4.50 (d, J = 11.6, PhCH₂); 4.55 (d, J = 11.2, PhCH₂); 4.56 (d, J = 11.4 PhCH₂); 4.63–4.71 (m, 3 H, H–C(5), PhCH₂); 4.83 (d, J = 11.6, PhCH₂); 7.13–7.37 (m, 22 arom. H); 7.62 (d, J = 8.34, 2 arom. H). ¹³C-NMR (CDCl₃): 21.56 (q); 67.84 (t); 68.30 (d); 72.67 (t); 73.02 (t); 74.87 (t); 75.16 (t); 76.32 (d); 77.71 (d); 80.32 (d); 116.39 (s); 127.62–128.65 (several d); 129.62 (d); 132.20 (s); 135.38 (s); 136.99 (s); 137.41 (s); 14.73 (s). CI-MS (NH₃): 709 (ca.3, [$M + NH_4$]⁺), 537 (5), 448 (24), 447 (80), 430 (12), 281 (16), 280 (100), 108 (28), 91 (12). Anal. calc. for C₄₁H₄₁NO₇S (691.85): C 71.18, H 5.97, N 2.02, S 4.63; found: C 71.22, H 5.72, N 2.07, S 4.51.

(5 R, 6 R, 7 S, 8 S)-6,7,8-*Tris* (benzyloxy)-5-[(benzyloxy)methyl]-5,6,7,8-tetrahydropyrido[1,2-d]tetrazole (22) and 2,5-Anhydro-3,4,6-tri-O-benzyl-D-glucononitrile (21). a) A soln. of 14 (45.28 g, 7.13 mmol) and NaN₃ (4.63 g, 71.2 mmol) in dry DMSO (60 ml) was stirred for 4 h at 110–125°, diluted with H₂O, and worked up as usual (AcOEt, H₂O). FC (hexane/AcOEt 85:15) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:15) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:16) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:15) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:10) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:15) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:16) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:15) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:16) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:16) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:17) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:18) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:19) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:19) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:19) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:19) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:19) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:19) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:19) afforded 22 (1.74 g, 43%). Yellowish, clear oil. R_f (hexane/AcOEt 85:19) afforded 22 (1.74 g, 9, 3000w, 3000w, 2920w, 2870m, 1955w, 1875w, 1810w, 1600w, 1495w, 1450w, 1355w, 1875w, 1810w, 1610w, 1450w, 1355w, 1875w, 1810w, 1610w, 1450w, 140w, 140w, 140w, 140w, 140w, 140w, 140w,

b) A soln. of **19** (49 mg, 0.07 mmol) and NaN₃ (49 mg, 0.75 mmol) in dry DMSO (0.7 ml) was stirred for 195 min at 110–120° and worked up as above. FC (hexane/AcOEt 85:15) afforded **21** (3 mg, 10%) and **22** (28 mg, 70%), both as colorless oils. **21**: R_f (hexane/AcOEt 8:2) 0.27. IR (CHCl₃): 3090w, 3070w, 3040w, 3010w, 2920m, 2870m, 1955w, 1875w, 1810w, 1490w, 1450w, 1360m, 1080s (br.), 1025s, 1000m, 910w. ¹H-NMR (CDCl₃): 3.57 (dd, J = 6.5, 10.1, H–C(6)); 3.65 (dd, J = 5.9, 10.1, H'–C(6)); 4.06 (t, J = 3.1, H–C(4)); 4.13–4.18 (m, H–C(3), H–C(5)); 4.44–4.63 (m, 6 H, PhCH₂); 4.72 (d, J = 4.9, H–C(2)); 7.21–7.39 (m, 15 arom. H). ¹H-NMR (C₆D₆): 3.51 (d, J = 6.29, H–C(6), H'–C(6)); 3.67 (dd, J = 2.7, 4.9, H–C(3)); 4.04 (t, $J \approx 3$, H–C(4)); 4.12 (dt, J = 3.3, 6.3, H–C(5)); 4.16–4.30 (m, 7 H, H–C(2), PhCH₂); 7.04–7.24 (m, 15 arom. H). CI-MS (C₄H₁₀): 431 (28), 430 (100, [M + H]⁺), 338 (34), 181 (43), 91 (39).

5-Azido-2,3,4,6-tetra-O-benzyl-5-deoxy-D-glucononitrile (20). A soln. of 19 (67 mg, 0.1 mmol) and NaN₃ (67 mg, 1.03 mmol) in dry DMSO (1 ml) was stirred for 5 min at 110–120°. Normal workup (AcOEt, H₂O) and FC (hexane/AcOEt 85:15) afforded 20 (20 mg, 37%). Colorless oil. $R_{\rm f}$ (hexane/AcOEt 8:2) 0.34. [α]_D²⁵ = +34.8 (c = 0.25, CHCl₃; [28]: +37.0 (c = 0.004, CHCl₃)). IR (CHCl₃): 3090w, 3060w, 3030w, 3005w, 2920w, 2870m, 2100s, 1950w, 1875w, 1810w, 1495w, 1455m, 1395w, 1365w, 1350w, 1265m, 1090s (br.), 1030m, 1000m, 910w. ¹H-NMR (CDCl₃): 3.64–3.72 (m, CH₂(6)); 3.80 (dd, $J \approx 2.4$, 9.2, H–C(4)); 3.90–3.96 (m, H–C(3), H–C(5)); 4.34 (d, J = 6.6, H–C(2)); 4.50 (s, 3 H, PhCH₂); 4.55 (d, J = 11.5, PhCH₂); 4.66 (d, J = 11.3, PhCH₂); 4.70 (d, J = 11.2,

PhCH₂); 4.75 (d, J = 11.3, PhCH₂); 4.85 (d, J = 11.5, PhCH₂); 7.20–7.40 (m, 20 arom. H). CI-MS (NH₃): 581 (29), 580 (78, $[M + NH_4]^+$), 564 (39), 563 (100, $[M + H]^+$), 535 (23), 108 (13).

(5 R, 6 R, 7 S, 8 S)-5,6,7,8-Tetrahydro-5-(hydroxymethyl)pyrido[1,2-d]tetrazole-6,7,8-triol (1). A soln. of **22** (200 mg, 0.36 mmol) in MeOH (7 ml) containing AcOH (*ca*. 0.05 ml) was hydrogenated for 30 h at 1 atm and at r.t. in the presence of 10% Pd/C (275 mg). The suspension was diluted with MeOH and centrifuged. The supernatant was filtered, the pellet was washed with MeOH (twice) and resubjected to centrifugation. The combined filtrates were evaporated. FC (AcOEt/MeOH 17:3) yielded 1 as a colorless oil (66 mg, 92%), which was crystallized from EtOH/AcOEt. R_f (AcOEt/MeOH 3:1) 0.39. M.p. 141–142°. [α] $_{12}^{25}$ = -33.9 (*c* = 0.649, H₂O). IR (KBr): 3060s (br.), 2965w, 2930w, 1635w, 1560w, 1525w, 1505w, 1445m, 1400m, 1360m, 1320m, 1270m, 1260m, 1240w, 1220w, 1195w, 1175m, 1155s, 1115s, 1100s, 1065m, 1025m, 995m, 915m, 855m, 775w, 755m. ¹H-NMR (CD₃OD): 3.69 (*dd*, *J* = 8.4, 9.5, H–C(7)); 3.99 (*t*, *J* = 9.1, H–C(6)); 4.05 (*dd*, *J* = 2.2, 12.1, 1 H, CH₂–C(5)); 4.19 (*dt*, *J* \leq 1, 2.1, 8.5, H–C(5)); 4.39 (*dd*, *J* = 2.7, 12.0, 1 H, CH₂–C(5)); 4.63 (*dd*, *J* = 0.7, 8.4, H–C(8)); irrad. at 4.63 \rightarrow 3.69 (*d*, *J* = 9.5), 4.19 (*dt*, *J* \approx 2.4, 8.6); irrad. at 4.19 \rightarrow 3.99 (*d*, *J* = 9.4); 4.05 (*dd*, *J* = 1.1, 11.4), 4.39 (*dd*, *J* = 1.1, 11.0), 4.63 (*d*, *J* = 8.3). ¹³C-NMR (D₂O): 57.95 (*t*); 62.81 (*d*), 65.68 (*d*); 67.06 (*d*); 74.37 (*d*); 155.52 (*s*). CI-MS (C₄H₁₀): 204 (14), 203 (100, [*M* + H]⁺). Anal. calc. for C₆H₁₀N₄O₄ (202.17): C 35.65, H 4.99, N 27.71; found: C 35.87, H 5.19, N 27.42.

2,3,4,6-*Tetra*-O-*benzyl*-1,5-*dideoxy*-1,5-*imino*-D-*glucitol* (23). A soln. of 22 (198 mg, 0.35 mmol) in dry Et₂O (8 ml) was added dropwise to LiAlH₄ (162 mg, 4.27 mmol) in Et₂O (5 ml). The mixture was heated under reflux for 5 h and poured onto ice-water (100 ml). Et₂O and dil. NaOH soln. (120 ml; 3.0 g of NaOH in 150 ml of H₂O) were added. Normal workup (Et₂O, H₂O) and FC (hexane/AcOEt 3:7) yielded 23 (153 mg, 83%). Coloriess crystals. An anal. sample was recrystallized in dry Et₂O/dry hexane. $R_{\rm f}$ (hexane/AcOEt 2:8) 0.25. M.p. 46.5–47.5° ([30]: 44–47°). [α]_D²⁵ = +33.1 (c = 0.66, CHCl₃). IR (CHCl₃): 3340w, 3095w, 3070w, 3005m, 2960m, 2920m, 2870m, 1955w, 1875w, 1815w, 1750w, 1600w, 1495w, 1455m, 1360m, 1095s (br.), 1065s (br.), 1030m, 910w. ¹H-NMR (CDCl₃): 1.66 (s, > 1 H, NH); 2.50 (dd, J = 10.1, 12.2, H_a–C(1)); 2.72 (ddd, J = 2.6, 5.9, 9.1, H–C(5)); 3.24 (dd, J = 4.7, 12.2, H_e–C(1)); 3.34 (t, J = 9.2, H–C(4)); 3.45–3.58 (m, H–C(2), H–C(3), H–C(6)); 3.67 (dd, J = 2.6, 9.0, H′–C(6)); 4.42 (d, J = 11.8, PhCH₂); 4.47 (d, J = 11.8, PhCH₂); 4.47 (d, J = 11.8, PhCH₂); 4.48 (d, J = 10.9, PhCH₂); 4.80 (d, J = 10.9, PhCH₂); 7.18–7.36 (m, 20 arom. H); irrad. at 3.34 → change at 2.72, 3.45–3.58. ¹³C-NMR (CDCl₃): 48.08 (t); 59.69 (d); 70.23 (t); 72.71 (t); 73.32 (t); 75.61 (t); 80.05 (d); 80.60 (d); 87.28 (d); 127.46–128.59 (several d); 137.91 (s); 138.34 (s); 138.84 (s). CI-MS (C₄H₁₀): 525 (38), 524 (100, [M + H]⁺), 416 (15). Anal. calc. for C₃₄H₃₇NO₄ (523.68): C 77.98, H 7.12, N 2.67; found: C 77.95, H 7.23, N 2.55.

(+)-1-Deoxynojirimycin (= 1,5-Dideoxy-1,5-imino-D-glucitol; 2). A soln. of 23 (42 mg, 0.08 mmol) in AcOH (2 ml) was hydrogenated for 15 h at 8 bar and at r.t. in the presence of 10% Pd/C (53 mg). The suspension was diluted with MeOH and centrifuged, the supernatant filtered and the pellet washed with MeOH (twice) and resubjected to centrifugation. The combined filtrates were evaporated, the residue was co-evaporated with MeOH and dried *i.v.* FC (silica gel, NH₃ in MeOH/CHCl₃ 1:1) of the residue afforded 2 · AcOH (15.5 mg, 86%). Colorless oil. $R_{\rm f}$ (NH₃ in MeOH/CHCl₃ 1:1) 0.12. ¹H-NMR (D₂O): 1.89 (*s*, AcO); 2.83 (*t*, $J \approx 11.9$, H_a-C(1)); 3.03 (*ddd*, J = 3.2, 5.3, 9.3, H-C(5)), 3.37–3.53 (*m*, 3 H, H_e-C(1), H-C(3), H-C(4)); 3.70 (*ddd*, J = 5.2, 9.0, 11.4, H-C(2)); 3.80 (*dd*, J = 5.4, 12.5, H-C(6)); 3.90 (*dd*, J = 3.2, 12.5, H'-C(6)). CI-MS (C₄H₁₀): 165 (6), 164 (82, [M + H]⁺), 146 (100).

The hydrochloride of **2** was prepared by repeated (6×) evaporation of a soln. of **2** · AcOH (14.5 mg, 0.07 mmol) in MeOH containing conc. aq. HCl soln. The residue was dissolved in H₂O and lyophilized to give **2** · HCl (13 mg, 100%). ¹H-NMR (D₂O): 2.97 (t, J = 12.0, H_a-C(1)); 3.21 (ddd, J = 3.3, 5.1, 10.3, H-C(5)); 3.48–3.63 (m, H_e-C(1), H-C(3), H-C(4)); 3.78 (ddd, J = 5.1, 9.1, 11.6, H-C(2)); 3.87 (dd, J = 5.1, 12.8, H-C(6)); 3.95 (dd, J = 3.3, 12.8, H'-C(6)). ¹³C-NMR (D₂O): 46.03 (t); 57.86 (t); 60.14 (d); 67.10 (d); 67.94 (d); 76.37 (d). CI-MS (C₄H₁₀): 164 (65, [M + H]⁺), 146 (100).

The free base 2 was obtained by treating a soln. of an anal. sample of 2 · HCl in H₂O with ion exchanger (*Dowex l* × 8, OH⁻; prepared from *Dowex l* × 8, Cl⁻ by treating with 1N NaOH). The ion exchanger was removed and the filtrate lyophilized. $[\alpha]_{25}^{25} = +35.8$ (c = 0.165, H₂O; [2]: +47 (H₂O)). ¹H-NMR (D₂O): 2.43 (*dd*, J = 10.8, 12.3, H_a-C(1)); 2.52 (*ddd*, J = 3.1, 6.3, 9.4, H-C(5)); 3.09 (*dd*, $J = 5.1, 12.3, H_e-C(1)$); 3.21 (t, J = 9.3, H-C(4)); 3.29 (t, J = 9.0, H-C(3)); 3.47 (*ddd*, J = 5.1, 9.0, 10.7, H-C(2)); 3.60 (*dd*, J = 6.3, 11.7, H-C(6)); 3.81 (*dd*, J = 3.0, 11.6, H'-C(6)); irrad. at 3.47 → change 2.43, 3.09, and 3.29.

Determination of the Molar Concentration of 1, Effecting 50% Inhibition (IC_{50}) of Emulsin. Emulsin (from almonds, E.C. 3.2.1.21; Fluka Biochemica) and 4-nitrophenyl β -D-glucopyranoside (Fluka Biochemica) were used without any further purification. IC_{50} was determined by incubating Emulsin (150.7 mU/ml in H₂O; 0.25 ml) with

or without the inhibitor (initial concentrations were $3.02 \cdot 10^{-3}$, $3.02 \cdot 10^{-4}$, $1.81 \cdot 10^{-4}$, or 0; 0.25 ml) and citrate buffer (initial concentration 0.0947M, pH 4.5; 0.25 ml) for 10 min at 37°. Substrate (initial concentrations were $1.98 \cdot 10^{-3}$, $7.95 \cdot 10^{-4}$, $5.96 \cdot 10^{-4}$, and $3.98 \cdot 10^{-4}$ M; 0.25 ml) was added, and the incubation was continued for 2, 4, 6, and 8 min before the reaction was stopped by addition of borate buffer (initial concentration 0.2M, pH 9.2; 0.9 ml). The amount of 4-nitrophenolate liberated was determined from the absorption at 400 nm ($\varepsilon = 15500$).

REFERENCES

- [1] K. Daigo, Y. Inamori, T. Takemoto, Chem. Pharm. Bull. 1986, 34, 2243.
- [2] S. Inouye, T. Tsuruoka, T. Ito, T. Niida, Tetrahedron 1968, 24, 2125.
- [3] G. W. J. Fleet, S. J. Nicholas, P. W. Smith, S. V. Evans, L. E. Fellows, R. J. Nash, Tetrahedron Lett. 1985, 26, 3127; R.J. Nash, E. A. Bell, J. M. Williams, Phytochemistry 1985, 24, 1620.
- [4] L. D. Hohenschutz, E. A. Bell, P. J. Jewess, D. P. Leworthy, P. J. Pryce, E. A. Arnold, J. Clardy, *Phytochemistry* 1981, 20, 811; R. Saul, J. P. Chambers, R. J. Molyneux, A. D. Elbein, *Arch. Biochem. Biophys.* 1983, 221, 593.
- [5] S. M. Colgate, P. R. Dorling, C. R. Huxtable, Aust. J. Chem. 1979, 32, 2257.
- [6] E.T. Reese, F.W. Parrish, M. Ettlinger, Carbohydr. Res. 1971, 18, 381.
- [7] M. P. Dale, H. E. Ensley, K. Kern, K. A. R. Sastry, L. D. Byers, Biochemistry 1985, 24, 3530.
- [8] M.K. Tong, G. Papandreou, B. Ganem, J. Am. Chem. Soc. 1990, 112, 6137.
- [9] D. Beer, A. Vasella, Helv. Chim. Acta 1986, 69, 267.
- [10] D. R. Wolk, A. Vasella, F. Schweikart, M. G. Peter, Helv. Chim. Acta, accepted.
- H. Kayakiri, S. Takase, T. Shibata, M. Okamoto, H. Terano, M. Hashimoto, J. Org. Chem. 1989, 54, 4015;
 A. D. Elbein, J. E. Tropea, M. Mitchell, G. P. Kaushal, J. Biol. Chem. 1990, 265, 15599.
- [12] H. Kayakiri, T. Oku, M. Hashimoto, Chem. Pharm. Bull. 1990, 38, 293.
- [13] S. Sakuda, A. Isogai, S. Matsumoto, A. Suzuki, K. Koseki, H. Kodama, Y. Yamada, Agric. Biol. Chem. 1988, 52, 1615; J. L. Maloisel, A. Vasella, B. M. Trost, D. L. van Vranken, J. Chem. Soc., Chem. Commun. 1991, 1099; D. A. Griffith, S. J. Danishefsky, J. Am. Chem. Soc. 1991, 113, 5863.
- [14] A. Frankowski, C. Seliga, D. Bur, J. Streith, Helv. Chim. Acta 1991, 74, 934.
- [15] A. Chaperon, Diplomarbeit, Universität Zürich, 1991.
- [16] G. Llewellyn, D. Pickles, J.M. Williams, M.B. Gravestock, 'Eurocarb VI, 6th European Symposium on Carbohydrate Chemistry', Heriot-Watt University, Edinburgh, Scottland, 8–13 Sept., 1991, B.15; N. Chida, Y. Furuno, S. Ogawa, J. Chem. Soc., Chem. Commun. 1989, 1230; B.P. Vaterlaus, J. Kiss, H. Spiegelberg, Helv. Chim. Acta 1964, 47, 381.
- [17] G. Buchanan, A. R. Edgar, B. D. Hewitt, J. Chem. Soc., Perkin Trans. 1 1987, 2371; B. Bernet, A. R. C. Bulusu Murty, A. Vasella, Helv. Chim. Acta 1990, 73, 940.
- [18] B. M. Aebischer, H. W. Hanssen, A. T. Vasella, W. B. Schweizer, J. Chem. Soc., Perkin Trans. 1 1982, 2139.
- [19] C. P. J. Glaudemans, H. G. Fletcher, Jr., Methods Carbohydr. Chem. 1972, 6, 373.
- [20] J. N. Kim, K. H. Chung, E. K. Ryu, Synth. Commun. 1990, 20, 2785.
- [21] B. Coxon and H.G. Fletcher, Jr., J. Am. Chem. Soc. 1963, 85, 2637; ibid. 1964, 86, 922; R. Meuwly, A. Vasella, Helv. Chim. Acta 1985, 68, 997.
- [22] E. M. Acton, A. N. Fujiwara, L. Goodman, D. W. Henry, Carbohydr. Res. 1974, 33, 135.
- [23] P.J. Garegg, B. Samuelsson, J. Chem. Soc., Perkin Trans. 1 1980, 2866.
- [24] K. Omura, D. Swern, Tetrahedron 1978, 34, 1651; A. J. Mancuso, S. L. Huang, D. Swern, J. Org. Chem. 1978, 43, 2480.
- [25] J. L. Luche, J. Am. Chem. Soc. 1978, 100, 2226; G. Rücker, H. Hörster, W. Gajewski, Synth. Commun. 1980, 10, 623; A. Krief, D. Surleraux, Synlett. 1991, 273.
- [26] J. P. Dulcere, M. Tawil, M. Santelli, J. Org. Chem. 1990, 55, 571; E. F. V. Scriven, K. Turnbull, Chem. Rev. 1988, 88, 297.
- [27] S.D. Rychnowsky, D.A. Bartlett, J. Am. Chem. Soc. 1981, 103, 3963.
- [28] P. Bird, D. H. Dolphin, S. G. Withers, Can. J. Chem. 1990, 68, 317.
- [29] R.A. LaForge, C.E. Cosgrove, A. D'Adamo, J. Org. Chem. 1956, 21, 988.
- [30] H. Murai, H. Enomoto, Y. Aoyagi, Y. Yoshikumi, M. Yagi, I. Shirakase, to Nippon Shinyaku Co. Ltd., Belg. 868.329 (CI. C07D), 16. Okt. 1978.
- [31] G. W.J. Fleet, N. M. Carpenter, S. Petursson, N. G. Ramsden, *Tetrahedron Lett.* **1990**, *31*, 409; G. W.J. Fleet, L. E. Fellows, P. W. Smith, *Tetrahedron* **1987**, *43*, 979; H. Iida, N. Yamazaki, C. Kibayashi, J. Org. Chem. **1987**, *52*, 3337.
- [32] T. Storz, Diplomarbeit, Universität Konstanz, 1989.